Jet Engine Test Cell | 0704119ba609956f4acd9a4c50d23244

Test and Evaluation of a Pilot Two-Stage Precipitator for Jet Engine Test Cell Exhaust Gas Cleaning

Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol

An Expert System for Aerodynamic Analysis of Jet Engine Test Cell Design

Fuel-Additive System for Test Cells

A Study of Current Test Methods for Aircraft Gas Turbines with a View Toward Preparation of a Standardized Test Code to Meet Requirements of Industrial Application and Litigation

Predictive Model for Jet Engine Test Cell Opacity

New Technology for Controlling NOx from Jet Engine Test Cells. Phase 1

Turbojet Aircraft Engine Test Cell Pollution Abatement Study

A Simulation of a Jet Engine Test Cell

SAE AIR4827 Evaluation of an Automated Smoke Abatement System for Jet Engine Test Cells

Portable Static Test Facility for Small, Expendable, Turbojet Engines. Phase 1

TCNOISE: A Computer Program to Calculate Noise Levels and Directivity from a Jet Engine Test Cell

Abatement of Particulate Emissions and Noise from Jet Engine Test Cells Including Reduction of Gas Flow with the Test Augmenter-Scrubber System

Aerothermodynamics of a Jet Engine Test Cell

Preliminary Report: Jet Engine Test Cell Emissions

Laboratory Evaluation of Novel Particulate Control Concepts for Jet Engine Test Cells

Aerothermodynamic Analysis of a Coanda/Refraction Jet Engine Test Facility

Jet Engine Test Cells

Influence of Noise Control Components and Structures on Turbojet Engine Testing and Aircraft Ground Operation

Noise Control for Aircraft Engine Test Cells and Ground Run-up Suppressors

Laser Velocimeter Utilization in Jet Engine Altitude Test Cells

Evaluation of Selective Non-catalytic Reduction of NOx for Jet Engine Test Cells

Jet Engine Test Cell Noise Reduction

Computational Analysis of Turbine Engine Test Cell Flow Phenomena

Non-Thermal Plasma System Candidates for Jet-Engine Test Cell Exhaust De-NO(subscript X)

Design Considerations for Enclosed Turbofan/turbojet Engine Test Cells

Parametric Study of the Aerothermodynamics of a Jet Engine Test Facility

An Investigation of Jet Engine Test Cell Exhaust Stack Aerodynamics and Performance Through Scale Model Test Studies and
Test and Evaluation of a Pilot Two-Stage Precipitator for Jet Engine Test Cell Exhaust Gas Cleaning

The economics of thermal energy recovery in jet engine test cells is examined. A numerical model to simulate the test cell augmenter tube is developed. This model is employed to determine the feasibility of installing heat exchangers along the augmenter or at the augmenter exit and using these heat exchangers to generate steam or electricity from the thermal energy in the jet exhaust. In general, energy recovery is not practical. The exhaust is quickly diluted by the entrained augmentation air, decreasing temperature gradients necessary for heat transfer. Most test cells are used too infrequently to warrant the cost of the hardware. (Author).

Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol
An Expert System for Aerodynamic Analysis of Jet Engine Test Cell Design

In order to ascertain what methods of effluent treatment would be applicable to jet engine test cells, a study was undertaken to assess current and projected exhaust gas treatment technology and to establish that technology which results in the most effective cleanup per dollar. Emission factor data for the most prevalent Air Force engines were gathered to determine what levels of pollutants were to be dealt with. A theoretical model of a test cell augmentor tube with liquid injection was developed to aid in estimating total system flow rates as a function of engine operating parameters. The Air Force test cell emission reduction program can be characterized as having three goals which are discussed. The first or immediate goal is one of reducing visible emissions. The second or near-term goal involves meeting particulate mass criteria such as might be promulgated by the Environmental Protection Agency. The third or future goal would be concerned with meeting the mass emission regulations for NOx. (Modified author abstract).

Fuel-Additive System for Test Cells

The report presents published jet engine emission data, test cell emission data collected at McClellan AFB during the operation of a J-57 turbojet engine at idle conditions and discusses problems involved in sampling test cell emissions. It was concluded that the variability of existing data indicates a need for a more refined study of jet engine pollutant emission rates. (Author Modified Abstract).

A Study of Current Test Methods for Aircraft Gas Turbines with a View Toward Preparation of a Standardized Test Code to Meet Requirements of Industrial Application

Page 3/16
The prototype scrubber and augmentation system designed for and operated in Black Point Test Cell Number 1 NARF-Jacksonville has abated emissions to the projected design level. The engines operated with the system were the J-79, TF-30, and J-52. Particulate emissions were reduced to the 0.002-0.005 gr/SCF level. The visible emissions fell well within the Ringleman 1/2 level after dissipation of the steam plume. No fallout was evident during operation of the system. It was further established that engine test performance was not affected by the TESI system. The scrubber system was mounted on the exhaust stack of the cell thus obviating the necessity for costly ducting and the requirement for ground utilization. The size requirement of the scrubber was reduced significantly with the use of a new augmenter design that decreased the induced air to jet exhaust flow ratio from values in the range of 2:1 to 0.4-0.6:1. This new augmenter can reduce the augmentation even further, thus providing the potential of retrofit of existing cells to accommodate engines larger than now being tested. Sound levels were reduced by the installation of the scrubber from 6-10 decibels (dBA), where the original sound level was of the order of 90-95 dBA.

Predictive Model for Jet Engine Test Cell Opacity

New Technology for Controlling NOx from Jet Engine Test Cells. Phase 1

Turbojet Aircraft Engine Test Cell Pollution Abatement Study
One such facility, is an L-shaped indoor testing facility for these large, high-bypass turbofan engines. However, within a testing facility, the engine does not draw only the air into the facility but also induces a second flow which is a consequence of the interaction between the engine exhaust and the cell environment and augmentor/diffuser tube. Understanding the physics and flow conditions of this facility would be beneficial to the research and testing community.

A Simulation of a Jet Engine Test Cell

SAE AIR4827

This report summarizes the findings of low cost, relatively low efficiency emission control measures for reduction of jet engine test cell opacity to less than 20%. The recommended cost effective opacity reduction system consists of an effective water spray system; a glass fiber mist eliminator; a medium efficiency, high velocity, throw-away type glass fiber filter media; and a reduced test cell discharge area. The report discussed the following topics: control methods, opacity, scrubbers, demisters, and filters.

Evaluation of an Automated Smoke Abatement System for Jet Engine Test Cells

Passive methods for decreasing jet engine test cell noise emissions are evaluated and compared. Such methods have the dual advantages of low cost and simplicity. In addition, the effect on the aerothermal performance of the test cell is minimal. Sound pressure levels were measured in and around test facilities equipped with various devices to further reduce noise. The data were supplemented with
parametric studies of noise reduction techniques conducted using a 1/20th scale physical model of the Navy’s standard T-10 jet engine test cell. Methods that attack the noise problem from outside and methods that attack the problem from inside the test cell are assessed, including trees and other vegetation, acoustic walls, core busters, and modifications to the exhaust stack. Mounting screens in the path of the jet and increasing the height of the exhaust stack are found to be the most effective.

Portable Static Test Facility for Small, Expendable, Turbojet Engines. Phase 1

Three control devices were evaluated in the laboratory to determine their ability to reduce visible emissions from jet engine test cells. The three control devices - a low-pressure drop wet scrubber, a wetted-sand filter, and a high-temperature, ceramic fabric baghouse - were tested on the exhaust of a small gas turbine engine with a variable resistive load. Three fuel mixtures were used in experimental runs: 100 percent kerosene, 100 percent toluene, and a 50/50 blend of kerosene and toluene. Smoke number measurements of the treated and untreated exhaust stream were compared to evaluate the reduction in visual emissions for each control device. None of the three devices tested indicated enough reduction in plume opacity to justify construction of full-scale test cell control systems. Recommendations were made for future evaluation of modified wetted sand filter and ceramic fiber baghouse control devices. (Author).

TCNOISE: A Computer Program to Calculate Noise Levels and Directivity from a Jet Engine Test Cell

This report presents results of aerodynamic and thermodynamic tests conducted on the first standard
Navy air-cooled T-10 test cell. Objectives of the tests were to: (1) Determine if aerodynamic and thermodynamic design objectives for the standard T-10 test cells were met; (2) Obtain data for comparing analytical predictions and validating analytical modeling techniques, and (3) Obtain baseline data of cell performance for use in case of future changes in design or operations. Aviation engine test cell; Jet engine testing; Jet engine exhaust flow; Turbulent jets; Compressible jets.

Abatement of Particulate Emissions and Noise from Jet Engine Test Cells Including Reduction of Gas Flow with the Test Augmenter-Scrubber System

An automated Smoke Abatement System (ASAS) which injects a smoke abatement fuel additive into the fuel system of a gas turbine engine was developed for reducing test cell exhaust stack plume opacity caused by engine operation. The ASAS contains three major components: transmissometer to monitor plume opacity, logic/control unit which determines if opacity exceeds the standard, and variable speed pump which injects the optimum quantity of the smoke abatement additive. The difference between the plume opacity and standard regulates the speed of the pump and quantity of additive injected. The System maintained test cell plume opacity to a visual opacity of 20 percent or less during evaluation tests at two Naval Air Rework Facilities (NARF's). It is recommended that the ASAS be used to control plume opacity from those engines compatible with smoke abatement additives.

Aerothermodynamics of a Jet Engine Test Cell

A computer model of the Coanda/Refraction Jet Engine Test Cell facility was developed using the PHOENICS computer code. The PHOENICS code was utilized to determine the steady aerothermal
characteristics of the test cell during the testing of an F404 gas turbine engine with afterburner in operation. Computer generated aerothermodynamic field variables of pressure, velocity and temperature parameters were compared to operational field test data. Observations regarding compared results as well as system behavior are presented. Additionally, recommendations of the applications of PHOENICS to future modeling projects are made. Theses. (mjm).

Preliminary Report: Jet Engine Test Cell Emissions

Laboratory Evaluation of Novel Particulate Control Concepts for Jet Engine Test Cells

Aerothermodynamic Analysis of a Coanda/Refraction Jet Engine Test Facility

The purpose of this project was to provide the U.S. Air Force with design data and a prototype of a fuel-additive system capable of reducing plume opacity during testing of a jet engine in a test cell. Jet engines are tested in a test cell after servicing and before placement in an aircraft. Certain jet engines, J-57, J-79, and TF-33 in particular, generate soot which exits the test cell in a plume of greater than 20 percent opacity (Ringelmann number of 1 or greater). This opacity exceeds the opacity limit (20 percent) set by the Environmental Protection Agency (EPA). The U.S. Air Force has previously funded projects that found two jet fuel additives, ferrocene and cerium octoate, that reduce the plume opacity. The scope of this project included the design, construction, and testing of a prototype fuel-additive system. The following report describes the fuel-additive system requirements, design parameters, design, fabrication,
and testing of the prototype system. The prototype fuel-additive system, properly built and operated, will provide the U.S. Air Force a means of testing jet engines in test cells while staying within EPA opacity limits. (aw).

Jet Engine Test Cells

An in-stack diffusion classifier was field tested at Tyndall Air Force Base, Florida. Particle size distribution measurements were made on the exhaust stream from the engine test cell while running a J75-P17 jet engine. Samples were collected at the test cell exhaust plane using a University of Washington in-stack cascade impactor followed, in series, by an in-stack diffusion classifier being developed at University of Florida. In addition, total particulate samples were obtained using absolute filters to determine particulate mass concentration in the exhaust gases. Opacity readings of the plume were also taken during sampling. The procedures to collect significant data and the general problems encountered to generate a reasonable estimate of jet exhaust aerosol size distribution using a diffusion classifier are described in this report.

Influence of Noise Control Components and Structures on Turbojet Engine Testing and Aircraft Ground Operation

Noise Control for Aircraft Engine Test Cells and Ground Run-up Suppressors
Laser Velocimeter Utilization in Jet Engine Altitude Test Cells

Evaluation of Selective Non-catalytic Reduction of NOₓ for Jet Engine Test Cells

The feasibility of utilizing a laser velocimeter (LV) in turbine engine testing in an altitude test cell was investigated. A one-component LV and associated environmental control system (ECS) were designed, fabricated, and installed in Test Cell J-2 of the Engine Test Facility (ETF). LV measurements made on the centerline of an F101 engine at one axial station downstream of the nozzle exit are presented and compared to the calculated exit velocity. Design data are presented on the vibration levels and temperatures encountered by the LV over a range of engine operating conditions. It was found that sufficient natural seed material existed in the exhaust flow to allow the LV to characterize the exit velocity of a turbojet engine during altitude testing. (Author).

Jet Engine Test Cell Noise Reduction

Computational Analysis of Turbine Engine Test Cell Flow Phenomena

Engine Testing: Electrical, Hybrid, IC Engine and Power Storage Testing and Test Facilities, Fifth Edition covers the requirements of test facilities dealing with e-vehicle systems and different configurations and operations. Chapters dealing with the rigging and operation of Units Under Test (UUT) are updated to include electric motor-based systems, test cell services and thermo-dynamics. Control module and
system testing using advanced, in-the-Loop (XiL) methods are described, including powertrain component integrated simulation and testing. All other chapters dealing with test cell design, installation, safety and use together with the cell support systems in IC engine testing are updated to reflect current developments and research. Covers multiple technical disciplines for anyone required to design, modify or operate an automotive powertrain test facility Provides tactics on the development of electrical and hybrid powertrains and energy storage systems Presents coverage of the housing and testing of automotive battery systems in addition to the use of ‘virtual’ testing in the form of "x-in-the-loop” throughout the powertrain’s development and test life

Non-Thermal Plasma System Candidates for Jet-Engine Test Cell Exhaust De-NO$_x$

Design Considerations for Enclosed Turbofan/turbojet Engine Test Cells

A computer program (written in FORTRAN for a CDC 6600) was developed to predict the plume opacity of jet engine test cells. The data input required for the model includes: the particle density, concentration, and size distribution in the exhaust gas, and the effective stack diameter. Previous data obtained for J-57 engines were used to test the model, and the difference between the theoretical and measured transmittance was generally within one percent. The program also predicts the theoretical effect of using electrostatic precipitators or venturi scrubbers to treat the exhaust emissions. These predictions indicate that control devices larger than the test cells would have to be installed to even achieve a minimal effect on the observed visibility. (Author).
Parametric Study of the Aerothermodynamics of a Jet Engine Test Facility

Test Devices, Inc. has completed the preliminary design for the Portable Static Test Facility (PSTF) for small, expendable, turbojet engines (50 - 1000 lb thrust) as part of the Phase I effort under SBIR contract DAAH01-94-C-RO32. The goal of providing a preliminary design for a development and test facility at a reasonable cost, assembled from standard, transportable modules and requiring minimum setup was achieved. During the Phase I activities a detailed analysis was performed that covered the description of engines to be tested, engine test procedures, general test specifications, test facility requirements and design considerations, installation, and engine control and test data requirements. From this a preliminary design for the portable test facility was prepared, plus a conceptual installation design and a preliminary design for the engine control and data system. Turbojet engine testing, Engine test cell, Static test facility, Engine control system, Expendable jet engine, Test cell instrumentation.

An Investigation of Jet Engine Test Cell Exhaust Stack Aerodynamics and Performance Through Scale Model Test Studies and Computational Fluid Dynamics Results

Thermal Energy Recovery in Gas Turbine Engine Test Cells

The Air Force routinely tests turbine engines in fixed test cells, some of which have been cited by state pollution control officials for violations of opacity regulations. A previous theoretical study, CEEDO-TR-78-53, predicted that relatively low efficiency and low cost techniques could bring jet engine test cells into compliance with air pollution regulations. The system proposed included a water cooling spray and a
mist eliminator followed by a medium efficiency, high velocity, throw-away type glass filter media. The most serious limitation of which velocity filtration is the aerosol mass loading the potential for rapid pressure drop build up across the filter. Since filter loading characteristics could not be theoretically predicted, the objective of this follow-on work was to experimentally test and report the filter loading characteristics of glass fiber filters for possible application to jet engine test cell exhaust plume opacity control. Two types of glass fiber media were tested: (1) two different medium efficiency pre-filter media, and (2) two different high efficiency final filter media.

Experimental Examination of the Aerothermal Performance of the T-10 Test Cell At, NAS (Naval Air Station), Cubi Point

Low Efficiency Control Measures for Jet Engine Test Cells

An investigation of the air quality impact of DoD turbine engine test facilities was performed. Emissions and pollutant dispersion from test cells and aircraft at six DoD installations were predicted using a sophisticated computer model. Predicted pollutant concentrations are compared to ambient air quality standards and measured ambient values for hydrocarbons, oxides of nitrogen, and particulates. Jet engine test cells have no significant impact on air quality for any pollutant at any location studied. Test cell pollutant concentrations are considerable less than the levels generated by aircraft operations and well below measured ambient air quality levels in the areas studied. Ambient carbon monoxide and sulfur dioxide levels resulting from test cell emissions are insignificant. Control of any pollutants generated by test cells would not measurably improve ambient air quality.
Analysis of Jet Engine Test Cell Pollution Abatement Methods

An Investigation of Jet Engine Test Cell Aerodynamics by Means of Scale Model Test Studies with Comparisons to Full-scale Test Results

Field Test of an In-Stack Diffusion Classifier on an Aircraft Engine Test Cell

Engine Testing

This report presents the Fortran program TCNOISE (Test Cell NOISE). The program predicts noise emitted by jet engine test cells. It is to be used in conjunction with the Naval Facilities Engineering Service Center's jet engine test cell aerothermal performance computer model, reading output files from this code to acquire the flow properties necessary for the calculation of jet noise and surface noise. The theoretical basis of TCNOISE, instructions for running the program, example runs, and comparisons of program predictions with measured noise emissions are included in the report.

The Effect of Navy and Air Force Aircraft Engine Test Facilities on Ambient Air Quality

The report summarizes the results of a survey and analysis of the application of conventional air pollutant abatement systems to the exhaust gas from jet engine test cells. The following methods for gas
treatment were investigated: wet scrubbers, incinerators, electrostatic precipitators, filters, dry inertial collectors. The least costly methods for meeting present emission standards are water scrubbing systems. One of the most attractive of wet scrubbers using Koch Flexitrays is developed in detail. The report covers the associated problem of water supply and disposal. The report also includes research and development suggestions for test cell emission control. (Author).

Air Pollution Source Emissions

For some time the U.S. Air Force has been concerned with NOx emissions from jet engine test cells operated by the Air Force. While there are no regulations limiting the NOx emissions of these facilities, such regulations could develop in the near future and would pose significant problems for the Air Force because no available technology is suited for application to jet engine test cells. This report describes laboratory studies of a new NOx control process based on the surprising ability of barium oxide to rapidly capture NO, a process that could be ideally suited to controlling NOx emission from jet engine test cells. Thus, experiments were done in which a simulated exhaust gas containing NO was passed through a bed of either granular barium oxide or barium oxide supported on high-strength alumina. Quantitative NO removals were achieved at space velocities ranging from 2010 to 28,000 v/v/hr temperatures from 21 deg C to 610 deg C, oxygen concentrations of 1.1 to 15.3 percent, and initial NO concentrations from 94 to 1700 ppm. When NO2 was present in the simulated exhaust, it was also removed. The barium oxide was able to capture NO and NO2 in amounts up to at least 23.5 percent of its initial weight. The practical implication is that NOx emissions of a jet engine test cell could be controlled by replacing the acoustic panels now used to decrease the cell's emission of sound with a set of panel bed filters filled with barium oxide. These panel bed filters would also absorb sound, could fit in the space in the test cell now occupied by the acoustic panels, and would remove NO and NO2 from the exhaust before it is
discharged to the environment.

Plume Opacity and Particulate Emissions from a Jet Engine Test Cell

Jet engine technician (AFSC 42672).

Findings of a study for the abatement of air pollution caused by operation of Naval jet engine test facilities, issued in August 1973, were that the use of fuel additives, the retrofit of smokeless combustors and the installation of gas cleaning equipment were potential means of controlling particulate emissions from the cells. Additives and smokeless combustors were found to require additional development leaving exhaust gas cleaning as the only technology then available for emission control. A two-stage electrostatic precipitator was recommended as the most viable alternative to a concept then being actively developed, the cross-flow wet scrubber. Due to the unique nature of the application and the high cost of full-sized equipment, it was recommended that a bench scale precipitator be tested to confirm performance and establish size parameters. Such a prototype unit was subsequently installed at Black Point test cell No. 1, Naval Air Rework Facility, Jacksonville, Florida and underwent a sequence of performance and operating tests under the supervision of UE and C. This report summarizes the results of the test program and provides data on the economics of applying a full-scale system to a jet engine test cell.